N-omega-nitro-L-arginine methyl ester increases airway responsiveness to serotonin but not to acetylcholine in cats in vivo.

نویسندگان

  • H Aizawa
  • S Takata
  • M Shigyo
  • K Matsumoto
  • H Inoue
  • N Hara
چکیده

BACKGROUND We previously reported that N(omega)-nitro-L-arginine methyl ester (L-NAME) enhances airway responsiveness to inhaled serotonin in cats treated with atropine and propranolol. OBJECTIVE To further elucidate the role of nitric oxide (NO) in airway responsiveness, we investigated whether L-NAME induces airway hyperresponsiveness to serotonin and acetylcholine (ACh) in animals with intact innervation. METHODS Cats were anesthetized with pentobarbital sodium (50 mg/kg, i.p.), and mechanically ventilated. To assess airway responsiveness, we measured increase in total pulmonary resistance (RL) produced by delivering serotonin or ACh aerosol to the airway, and determined PC200 (the concentration which caused a 200% increase in RL). RESULTS The following results were obtained: (1) Airway responsiveness to serotonin was significantly enhanced by the administration of L-NAME (100 mg/kg) in animals treated with atropine and propranolol. (2) Airway responsiveness to serotonin was also significantly enhanced by L- NAME in animals with intact innervation. (3) In contrast, airway responsiveness to ACh was not changed by the addition of L-NAME in cats with intact innervation. CONCLUSION These results suggest that NO modulates nonspecific airway responsiveness in animals with intact innervation, presumably by a reflex mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of nitric oxide released from iNANC neurons in airway responsiveness in cats.

The precise role of inhibitory nonadrenergic noncholinergic (iNANC) neurons and nitric oxide in airway hyperresponsiveness remains uncertain. The role of NO in the regulation of airway responsiveness was studied in anaesthetized and mechanically ventilated cats. To assess airway responsiveness, the changes in total pulmonary resistance (RL) produced by delivering serotonin aerosol to the airway...

متن کامل

Nitric oxide derived from sympathetic nerves regulates airway responsiveness to histamine in guinea pigs.

Nitric oxide (NO), which can be derived from the nervous system or the epithelium of the airway, may modulate airway responsiveness. We investigated how NO derived from the airway nervous system would affect the airway responsiveness to histamine and acetylcholine in mechanically ventilated guinea pigs. An NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) (1 mmol/kg i.p.) signific...

متن کامل

Effect of Neutrophils on Nitric Oxide Production from Stimulated Macrophages

Background: During the initial phase of an infection, there is an upregulation of inducible nitric oxide synthase in the macrophages for the production of nitric oxide. This is followed by the recruitment of polymorphonuclear leukocytes (neutrophils) which release arginase. Arginase competes with inducible nitric oxide synthase for a common substrate L-arginine. Objective: To investigate whethe...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

L-NAME-sensitive and -insensitive nonadrenergic noncholinergic relaxation of cat airway in vivo and in vitro.

The neurotransmitters responsible for neurogenic airway relaxation are still unknown. We investigated the effects of N omega-nitro-L-arginine methylester (L-NAME) on nonadrenergic and noncholinergic (NANC) relaxation evoked by electrical stimulation of vagus nerves in vivo and in vitro in cat. To that end, we measured pulmonary resistance during vagal nerve stimulation (VS) in vivo, and isometr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Respiration; international review of thoracic diseases

دوره 68 3  شماره 

صفحات  -

تاریخ انتشار 2001